#############################
# 調整媒介分析(R: mediationパッケージ)
# Output
#############################
# 「回避」を調整変数,「自己活用接近対処」を媒介変数とする調整媒介分析
## 「回避」が平均値の時のの偏回帰係数
> summary(a.int)
Call:
lm(formula = 自己活用接近対処_c ~ 性別_c + 現浪_c +
学年_c + 自己活用回避対処_c * 回避_c, data = dat)
Residuals:
Min 1Q Median 3Q Max
-3.5915 -0.4702 0.0227 0.5091 2.2638
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)
0.046621 0.037451 1.245 0.213794
性別_c
0.092035 0.074244 1.240 0.215726
現浪_c
0.356854 0.096679 3.691 0.000249 ***
学年_c
0.001785 0.035089 0.051 0.959461
自己活用回避対処_c
0.533513 0.039907 13.369 < 2e-16 ***
回避_c
-0.157060 0.039414 -3.985 7.81e-05 ***
自己活用回避対処_c:回避_c -0.173131
0.029571 -5.855 8.90e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 0.8051 on 477
degrees of freedom
Multiple R-squared: 0.3623, Adjusted
R-squared: 0.3543
F-statistic: 45.16 on 6 and 477 DF, p-value: < 2.2e-16
> summary(b.int)
Call:
lm(formula = 情動知能の成長感 ~ 性別_c + 現浪_c +
学年_c + 自己活用接近対処_c * 回避_c + 自己活用回避対処_c *
回避_c, data = dat)
Residuals:
Min 1Q Median 3Q Max
-3.5087 -0.3338 0.0484 0.4787 1.9595
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)
3.150662 0.034390 91.616 <2e-16 ***
性別_c
0.069475 0.067945 1.023 0.3071
現浪_c
-0.007414 0.089477 -0.083 0.9340
学年_c
-0.058930
0.032053 -1.838 0.0666 .
自己活用接近対処_c
0.485062 0.041804 11.603 <2e-16 ***
回避_c
0.066103 0.036611 1.806 0.0716 .
自己活用回避対処_c
0.088382 0.043547 2.030 0.0430 *
自己活用接近対処_c:回避_c -0.029926 0.031820 -0.940 0.3475
回避_c:自己活用回避対処_c
-0.025532 0.032490 -0.786 0.4324
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 0.7347 on 475
degrees of freedom
Multiple R-squared: 0.3882, Adjusted
R-squared: 0.3779
F-statistic: 37.67 on 8 and 475 DF, p-value: < 2.2e-16
## 「回避」が+1SDの時の偏回帰係数
> summary(a.int.plus1SD)
Call:
lm(formula = 自己活用接近対処_c ~ 性別_c + 現浪_c +
学年_c + 自己活用回避対処_c * 回避_high, data = dat)
Residuals:
Min 1Q Median 3Q Max
-3.5915 -0.4702 0.0227 0.5091 2.2638
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)
-0.108769 0.053372 -2.038 0.042108 *
性別_c
0.092035 0.074244 1.240 0.215726
現浪_c
0.356854 0.096679 3.691 0.000249 ***
学年_c
0.001785 0.035089 0.051 0.959461
自己活用回避対処_c
0.362222 0.052207 6.938 1.30e-11 ***
回避_high
-0.157060 0.039414 -3.985 7.81e-05 ***
自己活用回避対処_c:回避_high -0.173131
0.029571 -5.855 8.90e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 0.8051 on 477
degrees of freedom
Multiple R-squared: 0.3623, Adjusted
R-squared: 0.3543
F-statistic: 45.16 on 6 and 477 DF, p-value: < 2.2e-16
> summary(b.int.plus1SD)
Call:
lm(formula = 情動知能の成長感 ~ 性別_c + 現浪_c +
学年_c + 自己活用接近対処_c * 回避_high + 自己活用回避対処_c *
回避_high, data = dat)
Residuals:
Min 1Q Median 3Q Max
-3.5087 -0.3338 0.0484 0.4787 1.9595
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)
3.216063 0.049190 65.381 <2e-16 ***
性別_c
0.069475 0.067945 1.023 0.3071
現浪_c
-0.007414 0.089477 -0.083 0.9340
学年_c
-0.058930 0.032053 -1.838 0.0666 .
自己活用接近対処_c
0.455455 0.051521 8.840 <2e-16 ***
回避_high
0.066103 0.036611 1.806 0.0716 .
自己活用回避対処_c
0.063121 0.050601 1.247 0.2129
自己活用接近対処_c:回避_high -0.029926
0.031820 -0.940 0.3475
回避_high:自己活用回避対処_c -0.025532
0.032490 -0.786 0.4324
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 0.7347 on 475
degrees of freedom
Multiple R-squared: 0.3882, Adjusted
R-squared: 0.3779
F-statistic: 37.67 on 8 and 475 DF, p-value: < 2.2e-16
## 「回避」が-1SDの時の偏回帰係数
> summary(a.int.minus1SD)
Call:
lm(formula = 自己活用接近対処_c ~ 性別_c + 現浪_c +
学年_c + 自己活用回避対処_c * 回避_low, data = dat)
Residuals:
Min 1Q Median 3Q Max
-3.5915 -0.4702 0.0227 0.5091 2.2638
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)
0.202012 0.054752 3.690 0.000251 ***
性別_c
0.092035 0.074244 1.240 0.215726
現浪_c
0.356854 0.096679 3.691 0.000249 ***
学年_c
0.001785 0.035089 0.051 0.959461
自己活用回避対処_c
0.704803 0.046599 15.125 < 2e-16 ***
回避_low
-0.157060 0.039414 -3.985 7.81e-05 ***
自己活用回避対処_c:回避_low -0.173131
0.029571 -5.855 8.90e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 0.8051 on 477
degrees of freedom
Multiple R-squared: 0.3623, Adjusted
R-squared: 0.3543
F-statistic: 45.16 on 6 and 477 DF, p-value: < 2.2e-16
> summary(b.int.minus1SD)
Call:
lm(formula = 情動知能の成長感 ~ 性別_c + 現浪_c +
学年_c + 自己活用接近対処_c * 回避_low + 自己活用回避対処_c *
回避_low, data = dat)
Residuals:
Min 1Q Median 3Q Max
-3.5087 -0.3338 0.0484 0.4787 1.9595
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)
3.085262 0.050692 60.863 <2e-16 ***
性別_c
0.069475 0.067945 1.023 0.3071
現浪_c
-0.007414
0.089477 -0.083 0.9340
学年_c
-0.058930 0.032053 -1.838 0.0666 .
自己活用接近対処_c
0.514670 0.053132 9.687 <2e-16 ***
回避_low
0.066103 0.036611 1.806 0.0716 .
自己活用回避対処_c
0.113642 0.057435 1.979 0.0484 *
自己活用接近対処_c:回避_low -0.029926
0.031820 -0.940 0.3475
回避_low:自己活用回避対処_c -0.025532
0.032490 -0.786 0.4324
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 0.7347 on 475
degrees of freedom
Multiple R-squared: 0.3882, Adjusted
R-squared: 0.3779
F-statistic: 37.67 on 8 and 475 DF, p-value: < 2.2e-16
## 間接効果の検定
> summary(result.plus1SD)
Causal Mediation Analysis
Nonparametric Bootstrap Confidence
Intervals with the BCa Method
(Inference Conditional on the Covariate
Values Specified in `covariates')
Estimate 95% CI Lower 95% CI Upper p-value
ACME
0.1650
0.0889
0.2872 0.00
ADE
0.0631
-0.1293
0.2037 0.50
Total Effect 0.2281
0.0608 0.3666 0.01
Prop. Mediated 0.7233
0.4870
11.7464 0.01
Sample Size Used: 484
Simulations: 5000
> summary(result.minus1SD)
Causal Mediation Analysis
Nonparametric Bootstrap Confidence
Intervals with the BCa Method
(Inference Conditional on the Covariate
Values Specified in `covariates')
Estimate 95% CI Lower 95% CI Upper p-value
ACME
0.3627
0.2691 0.4813 0.00
ADE
0.1136
-0.0302
0.2463 0.12
Total Effect 0.4764
0.3738 0.5710 0.00
Prop. Mediated 0.7614
0.5550 1.1034 0.00
Sample Size Used: 484
Simulations: 5000
# ACMEが間接効果を指します。