#############################

# 調整媒介分析(R: mediationパッケージ)

# Output

#############################

 

# 「回避」を調整変数,「自己活用接近対処」を媒介変数とする調整媒介分析

## 「回避」が平均値の時のの偏回帰係数

> summary(a.int)

Call:

lm(formula = 自己活用接近対処_c ~ 性別_c + 現浪_c +

    学年_c + 自己活用回避対処_c * 回避_c, data = dat)

 

Residuals:

    Min      1Q  Median      3Q     Max

-3.5915 -0.4702  0.0227  0.5091  2.2638

 

Coefficients:

                           Estimate Std. Error t value Pr(>|t|)   

(Intercept)                0.046621   0.037451   1.245 0.213794   

性別_c                     0.092035   0.074244   1.240 0.215726   

現浪_c                     0.356854   0.096679   3.691 0.000249 ***

学年_c                     0.001785   0.035089   0.051 0.959461   

自己活用回避対処_c         0.533513   0.039907  13.369  < 2e-16 ***

回避_c                    -0.157060   0.039414  -3.985 7.81e-05 ***

自己活用回避対処_c:回避_c -0.173131   0.029571  -5.855 8.90e-09 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

Residual standard error: 0.8051 on 477 degrees of freedom

Multiple R-squared:  0.3623,        Adjusted R-squared:  0.3543

F-statistic: 45.16 on 6 and 477 DF,  p-value: < 2.2e-16

 

> summary(b.int)

Call:

lm(formula = 情動知能の成長感 ~ 性別_c + 現浪_c +

    学年_c + 自己活用接近対処_c * 回避_c + 自己活用回避対処_c *

    回避_c, data = dat)

 

Residuals:

    Min      1Q  Median      3Q     Max

-3.5087 -0.3338  0.0484  0.4787  1.9595

 

Coefficients:

                           Estimate Std. Error t value Pr(>|t|)   

(Intercept)                3.150662   0.034390  91.616   <2e-16 ***

性別_c                     0.069475   0.067945   1.023   0.3071   

現浪_c                    -0.007414   0.089477  -0.083   0.9340   

学年_c                    -0.058930   0.032053  -1.838   0.0666 . 

自己活用接近対処_c         0.485062   0.041804  11.603   <2e-16 ***

回避_c                     0.066103   0.036611   1.806   0.0716 . 

自己活用回避対処_c         0.088382   0.043547   2.030   0.0430 * 

自己活用接近対処_c:回避_c -0.029926   0.031820  -0.940   0.3475   

回避_c:自己活用回避対処_c -0.025532   0.032490  -0.786   0.4324   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

Residual standard error: 0.7347 on 475 degrees of freedom

Multiple R-squared:  0.3882,        Adjusted R-squared:  0.3779

F-statistic: 37.67 on 8 and 475 DF,  p-value: < 2.2e-16

 

 

## 「回避」が+1SDの時の偏回帰係数

> summary(a.int.plus1SD)

Call:

lm(formula = 自己活用接近対処_c ~ 性別_c + 現浪_c +

    学年_c + 自己活用回避対処_c * 回避_high, data = dat)

 

Residuals:

    Min      1Q  Median      3Q     Max

-3.5915 -0.4702  0.0227  0.5091  2.2638

 

Coefficients:

                              Estimate Std. Error t value Pr(>|t|)   

(Intercept)                  -0.108769   0.053372  -2.038 0.042108 * 

性別_c                        0.092035   0.074244   1.240 0.215726   

現浪_c                        0.356854   0.096679   3.691 0.000249 ***

学年_c                        0.001785   0.035089   0.051 0.959461   

自己活用回避対処_c            0.362222   0.052207   6.938 1.30e-11 ***

回避_high                    -0.157060   0.039414  -3.985 7.81e-05 ***

自己活用回避対処_c:回避_high -0.173131   0.029571  -5.855 8.90e-09 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

Residual standard error: 0.8051 on 477 degrees of freedom

Multiple R-squared:  0.3623,        Adjusted R-squared:  0.3543

F-statistic: 45.16 on 6 and 477 DF,  p-value: < 2.2e-16

 

> summary(b.int.plus1SD)

Call:

lm(formula = 情動知能の成長感 ~ 性別_c + 現浪_c +

    学年_c + 自己活用接近対処_c * 回避_high + 自己活用回避対処_c *

    回避_high, data = dat)

 

Residuals:

    Min      1Q  Median      3Q     Max

-3.5087 -0.3338  0.0484  0.4787  1.9595

 

Coefficients:

                              Estimate Std. Error t value Pr(>|t|)   

(Intercept)                   3.216063   0.049190  65.381   <2e-16 ***

性別_c                        0.069475   0.067945   1.023   0.3071   

現浪_c                       -0.007414   0.089477  -0.083   0.9340   

学年_c                       -0.058930   0.032053  -1.838   0.0666 . 

自己活用接近対処_c            0.455455   0.051521   8.840   <2e-16 ***

回避_high                     0.066103   0.036611   1.806   0.0716 . 

自己活用回避対処_c            0.063121   0.050601   1.247   0.2129   

自己活用接近対処_c:回避_high -0.029926   0.031820  -0.940   0.3475   

回避_high:自己活用回避対処_c -0.025532   0.032490  -0.786   0.4324   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

Residual standard error: 0.7347 on 475 degrees of freedom

Multiple R-squared:  0.3882,        Adjusted R-squared:  0.3779

F-statistic: 37.67 on 8 and 475 DF,  p-value: < 2.2e-16

 

 

## 「回避」が-1SDの時の偏回帰係数

> summary(a.int.minus1SD)

Call:

lm(formula = 自己活用接近対処_c ~ 性別_c + 現浪_c +

    学年_c + 自己活用回避対処_c * 回避_low, data = dat)

 

Residuals:

    Min      1Q  Median      3Q     Max

-3.5915 -0.4702  0.0227  0.5091  2.2638

 

Coefficients:

                             Estimate Std. Error t value Pr(>|t|)   

(Intercept)                  0.202012   0.054752   3.690 0.000251 ***

性別_c                       0.092035   0.074244   1.240 0.215726   

現浪_c                       0.356854   0.096679   3.691 0.000249 ***

学年_c                       0.001785   0.035089   0.051 0.959461   

自己活用回避対処_c           0.704803   0.046599  15.125  < 2e-16 ***

回避_low                    -0.157060   0.039414  -3.985 7.81e-05 ***

自己活用回避対処_c:回避_low -0.173131   0.029571  -5.855 8.90e-09 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

Residual standard error: 0.8051 on 477 degrees of freedom

Multiple R-squared:  0.3623,        Adjusted R-squared:  0.3543

F-statistic: 45.16 on 6 and 477 DF,  p-value: < 2.2e-16

 

> summary(b.int.minus1SD)

Call:

lm(formula = 情動知能の成長感 ~ 性別_c + 現浪_c +

    学年_c + 自己活用接近対処_c * 回避_low + 自己活用回避対処_c *

    回避_low, data = dat)

 

Residuals:

    Min      1Q  Median      3Q     Max

-3.5087 -0.3338  0.0484  0.4787  1.9595

 

Coefficients:

                             Estimate Std. Error t value Pr(>|t|)   

(Intercept)                  3.085262   0.050692  60.863   <2e-16 ***

性別_c                       0.069475   0.067945   1.023   0.3071   

現浪_c                      -0.007414   0.089477  -0.083   0.9340   

学年_c                      -0.058930   0.032053  -1.838   0.0666 . 

自己活用接近対処_c           0.514670   0.053132   9.687   <2e-16 ***

回避_low                     0.066103   0.036611   1.806   0.0716 . 

自己活用回避対処_c           0.113642   0.057435   1.979   0.0484 * 

自己活用接近対処_c:回避_low -0.029926   0.031820  -0.940   0.3475   

回避_low:自己活用回避対処_c -0.025532   0.032490  -0.786   0.4324   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

Residual standard error: 0.7347 on 475 degrees of freedom

Multiple R-squared:  0.3882,        Adjusted R-squared:  0.3779

F-statistic: 37.67 on 8 and 475 DF,  p-value: < 2.2e-16

 

## 間接効果の検定

> summary(result.plus1SD)

Causal Mediation Analysis

 

Nonparametric Bootstrap Confidence Intervals with the BCa Method

 

(Inference Conditional on the Covariate Values Specified in `covariates')

 

               Estimate 95% CI Lower 95% CI Upper p-value

ACME             0.1650       0.0889       0.2872    0.00

ADE              0.0631      -0.1293       0.2037    0.50

Total Effect     0.2281       0.0608       0.3666    0.01

Prop. Mediated   0.7233       0.4870      11.7464    0.01

 

Sample Size Used: 484

 

 

Simulations: 5000

 

> summary(result.minus1SD)

Causal Mediation Analysis

 

Nonparametric Bootstrap Confidence Intervals with the BCa Method

 

(Inference Conditional on the Covariate Values Specified in `covariates')

 

               Estimate 95% CI Lower 95% CI Upper p-value

ACME             0.3627       0.2691       0.4813    0.00

ADE              0.1136      -0.0302       0.2463    0.12

Total Effect     0.4764       0.3738       0.5710    0.00

Prop. Mediated   0.7614       0.5550       1.1034    0.00

 

Sample Size Used: 484

 

 

Simulations: 5000

 

# ACMEが間接効果を指します。