Mplus VERSION 6
MUTHEN & MUTHEN
07/31/2014 2:34 PM
INPUT INSTRUCTIONS
TITLE: ipsative_example
DATA: FILE IS
'data.csv';
VARIABLE: ! It is assumed
that the input file contains only item responses
! Any additional variables should be added below
Names ARE
i1i2
i1i3
i2i3
i4i5
i4i6
i5i6
i7i8
i7i9
i8i9;
USEVARIABLES ARE i1i2-i8i9;
CATEGORICAL ARE ALL;
ANALYSIS:
ESTIMATOR = ulsmv;
PARAMETERIZATION = theta;
MODEL:
Trait1 BY
i1i2*1 (L1)
i1i3*1 (L1)
i4i5*1 (L4)
i4i6*1 (L4)
i7i8*-1 (L7)
i7i9*-1 (L7);
Trait2 BY
i1i2*-1 (L2_n)
i2i3*1 (L2)
i4i5*1 (L5_n)
i5i6*-1 (L5)
i7i8*-1 (L8_n)
i8i9*1 (L8);
Trait3 BY
i1i3*1 (L3_n)
i2i3*1 (L3_n)
i4i6*-1 (L6_n)
i5i6*-1 (L6_n)
i7i9*-1 (L9_n)
i8i9*-1 (L9_n);
! variances for all traits are set to 1
Trait1-Trait3@1;
! starting values for correlations between traits
Trait1 WITH Trait2*0.3
Trait3*-0.3;
Trait2 WITH Trait3*0.5;
! declare uniquenesses and set their starting values
i1i2*2 (e1e2);
i1i3*2 (e1e3);
i2i3*2 (e2e3);
i4i5*2 (e4e5);
i4i6*2 (e4e6);
i5i6*2 (e5e6);
i7i8*2 (e7e8);
i7i9*2 (e7e9);
i8i9*2 (e8e9);
! declare correlated uniqunesses and set their starting values
i1i2 WITH i1i3*1 (e1);
i1i2 WITH i2i3*-1 (e2_n);
i1i3 WITH i2i3*1 (e3);
i4i5 WITH i4i6*1 (e4);
i4i5 WITH i5i6*-1 (e5_n);
i4i6 WITH i5i6*1 (e6);
i7i8 WITH i7i9*1 (e7);
i7i8 WITH i8i9*-1 (e8_n);
i7i9 WITH i8i9*1 (e9);
MODEL CONSTRAINT:
!factor loadings relating to the same item are equal in absolute value
L2_n = -L2;
L5_n = -L5;
L8_n = -L8;
! pair's uniqueness is equal to sum of 2 utility uniqunesses
e1e2 = e1 - e2_n;
e1e3 = e1 + e3;
e2e3 = -e2_n + e3;
e4e5 = e4 - e5_n;
e4e6 = e4 + e6;
e5e6 = -e5_n + e6;
e7e8 = e7 - e8_n;
e7e9 = e7 + e9;
e8e9 = -e8_n + e9;
! fix one uniqueness per block for identification
e1=1;
e4=1;
e7=1;
SAVEDATA: ! trait scores for
individuals are estimated and saved in a file
FILE IS 'ipsative_example_fscore';
SAVE = FSCORES;
INPUT READING TERMINATED NORMALLY
ipsative_example
SUMMARY OF ANALYSIS
Number of groups
1
Number of observations
1000
Number of dependent variables
9
Number of independent variables 0
Number of continuous latent variables
3
Observed dependent variables
Binary and ordered categorical (ordinal)
I1I2
I1I3 I2I3
I4I5
I4I6 I5I6
I7I8
I7I9 I8I9
Continuous latent variables
TRAIT1
TRAIT2
TRAIT3
Estimator
ULSMV
Maximum number of iterations
1000
Convergence criterion
0.500D-04
Maximum number of steepest descent
iterations
20
Parameterization
THETA
Input data file(s)
data.csv
Input data format FREE
UNIVARIATE PROPORTIONS AND COUNTS FOR
CATEGORICAL VARIABLES
I1I2
Category 1 0.494 494.000
Category 2 0.506 506.000
I1I3
Category 1 0.511 511.000
Category 2 0.489 489.000
I2I3
Category 1 0.519 519.000
Category 2 0.481 481.000
I4I5
Category 1 0.501 501.000
Category 2 0.499 499.000
I4I6
Category 1 0.522 522.000
Category 2 0.478 478.000
I5I6
Category 1 0.493 493.000
Category 2 0.507 507.000
I7I8
Category 1 0.487 487.000
Category 2 0.513 513.000
I7I9
Category 1 0.489 489.000
Category 2 0.511 511.000
I8I9
Category 1 0.475 475.000
Category 2 0.525 525.000
THE MODEL ESTIMATION TERMINATED NORMALLY
WARNING: THE RESIDUAL COVARIANCE MATRIX (THETA)
IS NOT POSITIVE DEFINITE.
THIS COULD INDICATE A
NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED
VARIABLE, A
CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED
VARIABLES, OR A LINEAR
DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES.
CHECK THE RESULTS
SECTION FOR MORE INFORMATION.
PROBLEM INVOLVING
VARIABLE I2I3.
TESTS OF MODEL FIT
Chi-Square Test of Model Fit
Value
14.277*
Degrees of Freedom
18
P-Value
0.7109
* The chi-square value for MLM,
MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
for chi-square difference
testing in the regular way. MLM,
MLR and WLSM
chi-square difference
testing is described on the Mplus website.
MLMV, WLSMV,
and ULSMV difference testing
is done using the DIFFTEST option.
Chi-Square Test of Model Fit for the
Baseline Model
Value
1928.950
Degrees of Freedom
36
P-Value
0.0000
CFI/TLI
CFI
1.000
TLI
1.004
Number of Free Parameters
27
RMSEA (Root Mean Square Error Of
Approximation)
Estimate
0.000
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
TRAIT1 BY
I1I2
1.914
0.654
2.929
0.003
I1I3
1.914
0.654
2.929
0.003
I4I5
0.638
0.120
5.339
0.000
I4I6
0.638
0.120
5.339
0.000
I7I8
-0.762
0.153
-4.981
0.000
I7I9
-0.762
0.153
-4.981
0.000
TRAIT2 BY
I1I2
-0.558
0.237
-2.355
0.019
I2I3
0.558
0.237
2.355
0.019
I4I5
1.112
0.139
7.989
0.000
I5I6
-1.112
0.139
-7.989
0.000
I7I8
-1.189
0.219
-5.424
0.000
I8I9
1.189
0.219
5.424
0.000
TRAIT3 BY
I1I3
1.088
0.286 3.805 0.000
I2I3
1.088
0.286
3.805
0.000
I4I6
-0.435
0.084
-5.163
0.000
I5I6
-0.435
0.084
-5.163
0.000
I7I9
-1.814
0.264
-6.863
0.000
I8I9
-1.814
0.264
-6.863
0.000
TRAIT1 WITH
TRAIT2
0.351
0.093
3.782
0.000
TRAIT3
-0.323
0.066
-4.889 0.000
TRAIT2 WITH
TRAIT3
0.492
0.100
4.933
0.000
I1I2 WITH
I1I3
1.000
0.000 Infinity 0.000
I2I3
-1.023
0.635
-1.610
0.107
I1I3 WITH
I2I3 1.253 0.781 1.603 0.109
I4I5 WITH
I4I6
1.000
0.000 Infinity 0.000
I5I6
-1.027
0.324
-3.172
0.002
I4I6 WITH
I5I6
0.520
0.177
2.934 0.003
I7I8 WITH
I7I9
1.000
0.000 Infinity 0.000
I8I9
-0.751
0.352
-2.133
0.033
I7I9 WITH
I8I9
1.003
0.591
1.699
0.089
Thresholds
I1I2$1
-0.034
0.091
-0.375
0.708
I1I3$1
0.066
0.095
0.691
0.490
I2I3$1
0.100
0.086
1.156
0.248
I4I5$1
0.005
0.081
0.063
0.950
I4I6$1
0.084
0.060
1.386
0.166
I5I6$1
-0.033
0.074
-0.441
0.659
I7I8$1
-0.068
0.083
-0.819
0.413
I7I9$1
-0.062
0.088
-0.698
0.485
I8I9$1 -0.131 0.084 -1.552 0.121
Variances
TRAIT1
1.000
0.000
999.000 999.000
TRAIT2
1.000
0.000
999.000 999.000
TRAIT3
1.000
0.000
999.000 999.000
Residual Variances
I1I2
2.023
0.635
3.184
0.001
I1I3
2.253
0.781
2.883
0.004
I2I3
2.276
1.361
1.673
0.094
I4I5
2.027
0.324
6.259
0.000
I4I6
1.520
0.177
8.575
0.000
I5I6
1.547
0.418
3.701
0.000
I7I8
1.751
0.352
4.976
0.000
I7I9
2.003
0.591
3.392
0.001
I8I9
1.754
0.837
2.097
0.036
QUALITY OF NUMERICAL RESULTS
Condition Number for
the Information Matrix
0.267E-03
(ratio of
smallest to largest eigenvalue)
SAMPLE STATISTICS FOR ESTIMATED FACTOR
SCORES
SAMPLE STATISTICS
Means
TRAIT1
TRAIT2
TRAIT3
________
________
________
1
-0.001
0.002
0.004
Covariances
TRAIT1
TRAIT2 TRAIT3
________
________
________
TRAIT1
0.564
TRAIT2
0.260
0.574
TRAIT3
-0.171
0.321
0.574
Correlations
TRAIT1
TRAIT2
TRAIT3
________
________
________
TRAIT1
1.000
TRAIT2
0.458
1.000
TRAIT3
-0.301
0.560
1.000
SAVEDATA INFORMATION
Order and format of variables
I1I2
F10.3
I1I3 F10.3
I2I3
F10.3
I4I5
F10.3
I4I6
F10.3
I5I6
F10.3
I7I8
F10.3
I7I9
F10.3
I8I9
F10.3
TRAIT1
F10.3
TRAIT2
F10.3
TRAIT3
F10.3
Save file
ipsative_example_fscore
Save file format
12F10.3
Save file record length
5000
Beginning Time: 14:34:44
Ending Time: 14:34:44
Elapsed
Time: 00:00:00
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2010 Muthen & Muthen