Mplus VERSION 6

MUTHEN & MUTHEN

07/31/2014   2:34 PM

 

INPUT INSTRUCTIONS

 

  TITLE: ipsative_example

 

  DATA:    FILE IS 'data.csv';

 

  VARIABLE:  ! It is assumed that the input file contains only item responses

  ! Any additional variables should be added below

  Names ARE

  i1i2

  i1i3

  i2i3

  i4i5

  i4i6

  i5i6

  i7i8

  i7i9

  i8i9;

  USEVARIABLES ARE i1i2-i8i9;

  CATEGORICAL ARE ALL;

 

  ANALYSIS:

  ESTIMATOR = ulsmv;

  PARAMETERIZATION = theta;

 

  MODEL:

 

  Trait1  BY

  i1i2*1  (L1)

  i1i3*1  (L1)

  i4i5*1  (L4)

  i4i6*1  (L4)

  i7i8*-1  (L7)

  i7i9*-1  (L7);

 

  Trait2  BY

  i1i2*-1  (L2_n)

  i2i3*1  (L2)

  i4i5*1  (L5_n)

  i5i6*-1  (L5)

  i7i8*-1  (L8_n)

  i8i9*1  (L8);

 

  Trait3  BY

  i1i3*1  (L3_n)

  i2i3*1  (L3_n)

  i4i6*-1  (L6_n)

  i5i6*-1  (L6_n)

  i7i9*-1  (L9_n)

  i8i9*-1  (L9_n);

 

  ! variances for all traits are set to 1

  Trait1-Trait3@1;

 

  ! starting values for correlations between traits

  Trait1 WITH  Trait2*0.3 Trait3*-0.3;

  Trait2 WITH  Trait3*0.5;

 

  ! declare uniquenesses and set their starting values

  i1i2*2 (e1e2);

  i1i3*2 (e1e3);

  i2i3*2 (e2e3);

  i4i5*2 (e4e5);

  i4i6*2 (e4e6);

  i5i6*2 (e5e6);

  i7i8*2 (e7e8);

  i7i9*2 (e7e9);

  i8i9*2 (e8e9);

 

  ! declare correlated uniqunesses and set their starting values

  i1i2 WITH i1i3*1 (e1);

  i1i2 WITH i2i3*-1 (e2_n);

  i1i3 WITH i2i3*1 (e3);

 

  i4i5 WITH i4i6*1 (e4);

  i4i5 WITH i5i6*-1 (e5_n);

  i4i6 WITH i5i6*1 (e6);

 

  i7i8 WITH i7i9*1 (e7);

  i7i8 WITH i8i9*-1 (e8_n);

  i7i9 WITH i8i9*1 (e9);

 

 

  MODEL CONSTRAINT:

 

  !factor loadings relating to the same item are equal in absolute value

  L2_n = -L2;

  L5_n = -L5;

  L8_n = -L8;

 

  ! pair's uniqueness is equal to sum of 2 utility uniqunesses

  e1e2 = e1 - e2_n;

  e1e3 = e1 + e3;

  e2e3 = -e2_n + e3;

  e4e5 = e4 - e5_n;

  e4e6 = e4 + e6;

  e5e6 = -e5_n + e6;

  e7e8 = e7 - e8_n;

  e7e9 = e7 + e9;

  e8e9 = -e8_n + e9;

 

  ! fix one uniqueness per block for identification

  e1=1;

  e4=1;

  e7=1;

 

  SAVEDATA:  ! trait scores for individuals are estimated and saved in a file

  FILE IS 'ipsative_example_fscore';

  SAVE = FSCORES;

 

 

 

INPUT READING TERMINATED NORMALLY

 

 

 

ipsative_example

 

SUMMARY OF ANALYSIS

 

Number of groups                                                 1

Number of observations                                        1000

 

Number of dependent variables                                    9

Number of independent variables                                  0

Number of continuous latent variables                            3

 

Observed dependent variables

 

  Binary and ordered categorical (ordinal)

   I1I2        I1I3        I2I3        I4I5        I4I6        I5I6

   I7I8        I7I9        I8I9

 

Continuous latent variables

   TRAIT1      TRAIT2      TRAIT3

 

 

Estimator                                                    ULSMV

Maximum number of iterations                                  1000

Convergence criterion                                    0.500D-04

Maximum number of steepest descent iterations                   20

Parameterization                                             THETA

 

Input data file(s)

  data.csv

 

Input data format  FREE

 

 

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

 

    I1I2

      Category 1    0.494      494.000

      Category 2    0.506      506.000

    I1I3

      Category 1    0.511      511.000

      Category 2    0.489      489.000

    I2I3

      Category 1    0.519      519.000

      Category 2    0.481      481.000

    I4I5

      Category 1    0.501      501.000

      Category 2    0.499      499.000

    I4I6

      Category 1    0.522      522.000

      Category 2    0.478      478.000

    I5I6

      Category 1    0.493      493.000

      Category 2    0.507      507.000

    I7I8

      Category 1    0.487      487.000

      Category 2    0.513      513.000

    I7I9

      Category 1    0.489      489.000

      Category 2    0.511      511.000

    I8I9

      Category 1    0.475      475.000

      Category 2    0.525      525.000

 

 

 

THE MODEL ESTIMATION TERMINATED NORMALLY

 

     WARNING:  THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE.

     THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED

     VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED

     VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES.

     CHECK THE RESULTS SECTION FOR MORE INFORMATION.

     PROBLEM INVOLVING VARIABLE I2I3.

 

 

 

 

TESTS OF MODEL FIT

 

Chi-Square Test of Model Fit

 

          Value                             14.277*

          Degrees of Freedom                    18

          P-Value                           0.7109

 

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used

    for chi-square difference testing in the regular way.  MLM, MLR and WLSM

    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV,

    and ULSMV difference testing is done using the DIFFTEST option.

 

Chi-Square Test of Model Fit for the Baseline Model

 

          Value                           1928.950

          Degrees of Freedom                    36

          P-Value                           0.0000

 

CFI/TLI

 

          CFI                                1.000

          TLI                                1.004

 

Number of Free Parameters                       27

 

RMSEA (Root Mean Square Error Of Approximation)

 

          Estimate                           0.000

 

 

 

MODEL RESULTS

 

                                                    Two-Tailed

                    Estimate       S.E.  Est./S.E.    P-Value

 

 TRAIT1   BY

    I1I2               1.914      0.654      2.929      0.003

    I1I3               1.914      0.654      2.929      0.003

    I4I5               0.638      0.120      5.339      0.000

    I4I6               0.638      0.120      5.339      0.000

    I7I8              -0.762      0.153     -4.981      0.000

    I7I9              -0.762      0.153     -4.981      0.000

 

 TRAIT2   BY

    I1I2              -0.558      0.237     -2.355      0.019

    I2I3               0.558      0.237      2.355      0.019

    I4I5               1.112      0.139      7.989      0.000

    I5I6              -1.112      0.139     -7.989      0.000

    I7I8              -1.189      0.219     -5.424      0.000

    I8I9               1.189      0.219      5.424      0.000

 

 TRAIT3   BY

    I1I3               1.088      0.286      3.805      0.000

    I2I3               1.088      0.286      3.805      0.000

    I4I6              -0.435      0.084     -5.163      0.000

    I5I6              -0.435      0.084     -5.163      0.000

    I7I9              -1.814      0.264     -6.863      0.000

    I8I9              -1.814      0.264     -6.863      0.000

 

 TRAIT1   WITH

    TRAIT2             0.351      0.093      3.782      0.000

    TRAIT3            -0.323      0.066     -4.889      0.000

 

 TRAIT2   WITH

    TRAIT3             0.492      0.100      4.933      0.000

 

 I1I2     WITH

    I1I3               1.000      0.000   Infinity      0.000

    I2I3              -1.023      0.635     -1.610      0.107

 

 I1I3     WITH

    I2I3               1.253      0.781      1.603      0.109

 

 I4I5     WITH

    I4I6               1.000      0.000   Infinity      0.000

    I5I6              -1.027      0.324     -3.172      0.002

 

 I4I6     WITH

    I5I6               0.520      0.177      2.934      0.003

 

 I7I8     WITH

    I7I9               1.000      0.000   Infinity      0.000

    I8I9              -0.751      0.352     -2.133      0.033

 

 I7I9     WITH

    I8I9               1.003      0.591      1.699      0.089

 

 Thresholds

    I1I2$1            -0.034      0.091     -0.375      0.708

    I1I3$1             0.066      0.095      0.691      0.490

    I2I3$1             0.100      0.086      1.156      0.248

    I4I5$1             0.005      0.081      0.063      0.950

    I4I6$1             0.084      0.060      1.386      0.166

    I5I6$1            -0.033      0.074     -0.441      0.659

    I7I8$1            -0.068      0.083     -0.819      0.413

    I7I9$1            -0.062      0.088     -0.698      0.485

    I8I9$1            -0.131      0.084     -1.552      0.121

 

 Variances

    TRAIT1             1.000      0.000    999.000    999.000

    TRAIT2             1.000      0.000    999.000    999.000

    TRAIT3             1.000      0.000    999.000    999.000

 

 Residual Variances

    I1I2               2.023      0.635      3.184      0.001

    I1I3               2.253      0.781      2.883      0.004

    I2I3               2.276      1.361      1.673      0.094

    I4I5               2.027      0.324      6.259      0.000

    I4I6               1.520      0.177      8.575      0.000

    I5I6               1.547      0.418      3.701      0.000

    I7I8               1.751      0.352      4.976      0.000

    I7I9               2.003      0.591      3.392      0.001

    I8I9               1.754      0.837      2.097      0.036

 

 

QUALITY OF NUMERICAL RESULTS

 

     Condition Number for the Information Matrix              0.267E-03

       (ratio of smallest to largest eigenvalue)

 

 

SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES

 

 

     SAMPLE STATISTICS

 

 

           Means

              TRAIT1        TRAIT2        TRAIT3

              ________      ________      ________

 1             -0.001         0.002         0.004

 

 

           Covariances

              TRAIT1        TRAIT2        TRAIT3

              ________      ________      ________

 TRAIT1         0.564

 TRAIT2         0.260         0.574

 TRAIT3        -0.171         0.321         0.574

 

 

           Correlations

              TRAIT1        TRAIT2        TRAIT3

              ________      ________      ________

 TRAIT1         1.000

 TRAIT2         0.458         1.000

 TRAIT3        -0.301         0.560         1.000

 

 

SAVEDATA INFORMATION

 

  Order and format of variables

 

    I1I2           F10.3

    I1I3           F10.3

    I2I3           F10.3

    I4I5           F10.3

    I4I6           F10.3

    I5I6           F10.3

    I7I8           F10.3

    I7I9           F10.3

    I8I9           F10.3

    TRAIT1         F10.3

    TRAIT2         F10.3

    TRAIT3         F10.3

 

  Save file

    ipsative_example_fscore

 

  Save file format

    12F10.3

 

  Save file record length    5000

 

 

     Beginning Time:  14:34:44

        Ending Time:  14:34:44

       Elapsed Time:  00:00:00

 

 

 

MUTHEN & MUTHEN

3463 Stoner Ave.

Los Angeles, CA  90066

 

Tel: (310) 391-9971

Fax: (310) 391-8971

Web: www.StatModel.com

Support: Support@StatModel.com

 

Copyright (c) 1998-2010 Muthen & Muthen