ATRISCAL coordinate estimation by steepest descent method

Kojiro Shojima

(The National Center for University Entrance Examinations)

In Shojima (2009), the stress function of asymmetric triangulation scaling (ATRISCAL) is proposed to be given by the following expression:

$$F(\boldsymbol{X}) = \sum_{c,r \ (r\neq c)}^{n+1} \lambda_{c|r} \left(p_{c|r} - \frac{\left| \overrightarrow{OX_{rc}} \right|}{\left| \overrightarrow{OX_{r}} \right|} \right)^2 = \sum_{c,r \ (r\neq c)}^{n+1} \lambda_{c|r} \left(p_{c|r} - \frac{|\boldsymbol{x}_{rc}|}{|\boldsymbol{x}_{r}|} \right)^2, \tag{1}$$

where n is the number of items. In addition, $p_{c|r}$ is the conditional correct response rate of item c when item r is answered correctly, that is, $p_{c|r} = p_{rc}/p_r$, where p_r is the correct response rate of item r and p_{rc} , the joint correct response rate of items r and c. In addition, item n + 1 is an imaginary item with a correct response rate of 1.0, that is, $p_{n+1} = 1.0$. Therefore, $p_{n+1|r} = 1.0$ and $p_{c|n+1} = p_c$.

In addition, $\mathbf{X} = \{x_{rm}\}$ $((n + 1) \times M)$ gives the *M*-dimensional coordinates of the n + 1 items to be estimated, where \mathbf{x}_r $(M \times 1)$ is the *r*-th row vector in \mathbf{X} . Furthermore, $\lambda_{c|r}$ is a nonnegative weight and usually, $\lambda_{c|r} = \lambda_{r|c}$. Furthermore,

$$\overrightarrow{OX_{rc}} = -\frac{(\overrightarrow{OX_{r}} \cdot \overrightarrow{X_{r}X_{c}})\overrightarrow{OX_{c}} - (\overrightarrow{OX_{c}} \cdot \overrightarrow{X_{r}X_{c}})\overrightarrow{OX_{r}}}{\left|\overline{X_{r}X_{c}}\right|^{2}} = -\frac{\{\boldsymbol{x}_{r}'(\boldsymbol{x}_{c} - \boldsymbol{x}_{r})\}\boldsymbol{x}_{c} - \{\boldsymbol{x}_{c}'(\boldsymbol{x}_{c} - \boldsymbol{x}_{r})\}\boldsymbol{x}_{r}}{|\boldsymbol{x}_{c} - \boldsymbol{x}_{r}|^{2}} = \boldsymbol{x}_{rc} \quad (2)$$

in Equation (1) is the perpendicular foot from the origin O on the line segment $X_r X_c$. That is,

$$\frac{\left|\overrightarrow{OX_{rc}}\right|}{\left|\overrightarrow{OX_{r}}\right|} = \frac{\sqrt{\left|\overrightarrow{OX_{r}}\right|^{2}\left|\overrightarrow{OX_{c}}\right|^{2} - \overrightarrow{OX_{r}} \cdot \overrightarrow{OX_{c}}}}{\left|\overrightarrow{OX_{r}}\right|\left|\overrightarrow{X_{r}X_{c}}\right|} = \frac{\sqrt{\left|\boldsymbol{x}_{r}\right|^{2}\left|\boldsymbol{x}_{c}\right|^{2} - \left(\boldsymbol{x}_{r}^{\prime}\boldsymbol{x}_{c}\right)^{2}}}{\left|\boldsymbol{x}_{r}\right|\left|\boldsymbol{x}_{c}-\boldsymbol{x}_{r}\right|} = \pi_{c|r}.$$
(3)

Let the number of dimensions be 3 (M = 3), and the z-coordinate of each item in the 3D space is constrained to be nonnegative. In other words, $x_{r3} \ge 0$ $(r = 1, \dots, n)$. In addition, the coordinates of some items in the 3D space are fixed because of spatial indeterminacy. First, the coordinates of the imaginary n + 1-th item are set to $\mathbf{x}_{n+1} = [0 \ 0 \ 1]'$. Next, for the item with index k whose correct response rate is the lowest, the x- and y-coordinates are set as 0 and a positive value, respectively, that is, $\mathbf{x}_k = [0 \ x_{k2}(> 0) \ x_{k3}]'$. Finally, for the item with index l whose correct response rate conditioned by item k is the median among $p(\cdot|k)$ s, the x-coordinate is set to a positive value, that is, $\mathbf{x}_l = [x_{l1}(> 0) \ x_{l2} \ x_{l3}]'$.

Although the stress function of Equation (1) is straightforward and simple, it tends to produce a degenerate solution. Therefore, using a penalty function $T(\mathbf{X})$ against degeneration, the stress function is reconstructed by

$$F^*(\boldsymbol{X}) = \frac{F(\boldsymbol{X})}{T(\boldsymbol{X})},\tag{4}$$

where

$$T(\boldsymbol{X}) = \sum_{c,r \ (r \neq c)}^{n+1} \delta_{c|r} \lambda_{c|r} \left(\pi_{c|r} - \bar{p} \right)^2.$$
(5)

The constant $\delta_{c|r}$ is dichotomous and is coded 1 when the perpendicular foot \boldsymbol{x}_{rc} is located within the line segment between \boldsymbol{x}_r and \boldsymbol{x}_c . On the other hand, the constant is coded 0 if the perpendicular foot is located on the extension of the line segment. In addition, \bar{p} in Equation (5) is

$$\bar{p} = \frac{\sum_{c,r \ (r \neq c)}^{n+1} p_{c|r}}{n(n+1)}.$$
(6)

To estimate X by minimizing the stress function using the steepest descent method, the first derivatives of the stress function are required. First, the derivative of Equation (4) with respect to x_j $(j = 1, \dots, n)$ is given by

$$\frac{\partial F^*(\boldsymbol{X})}{\partial \boldsymbol{x}_j} = \frac{1}{T(\boldsymbol{X})} \frac{\partial F(\boldsymbol{X})}{\partial \boldsymbol{x}_j} - \frac{F(\boldsymbol{X})}{\{T(\boldsymbol{X})\}^2} \frac{\partial T(\boldsymbol{X})}{\partial \boldsymbol{x}_j},\tag{7}$$

where

$$\frac{\partial F(\boldsymbol{X})}{\partial \boldsymbol{x}_{j}} = \frac{\partial}{\partial \boldsymbol{x}_{j}} \Big\{ \sum_{r \ (\neq j)}^{n+1} \lambda_{j|r} (p_{j|r} - \pi_{j|r})^{2} + \sum_{c \ (\neq j)}^{n+1} \lambda_{c|j} (p_{c|j} - \pi_{c|j})^{2} \Big\}$$
(8)

and

$$\frac{\partial T(\boldsymbol{X})}{\partial \boldsymbol{x}_j} = \frac{\partial}{\partial \boldsymbol{x}_j} \Big\{ \sum_{r \ (\neq j)}^{n+1} \delta_{j|r} \lambda_{j|r} (\pi_{j|r} - \bar{p})^2 + \sum_{c \ (\neq j)}^{n+1} \delta_{c|j} \lambda_{c|j} (\pi_{c|j} - \bar{p})^2 \Big\}.$$
(9)

The kernels of the above equations are

$$\frac{\partial (p_{j|r} - \pi_{j|r})^2}{\partial \boldsymbol{x}_j} = -\frac{2\lambda_{j|r}(p_{j|r} - \pi_{j|r})}{\pi_{j|r}|\boldsymbol{x}_r|^2|\boldsymbol{x}_j - \boldsymbol{x}_r|^2} \Big[|\boldsymbol{x}_r|^2 (1 - \pi_{j|r}^2) \boldsymbol{x}_j - (\boldsymbol{x}_j' \boldsymbol{x}_r - \pi_{j|r}^2|\boldsymbol{x}_r|^2) \boldsymbol{x}_r \Big],$$
(10)

$$\frac{\partial (p_{c|j} - \pi_{c|j})^2}{\partial \boldsymbol{x}_j} = -\frac{2\lambda_{c|j}(p_{c|j} - \pi_{c|j})}{\pi_{c|j}|\boldsymbol{x}_j|^2|\boldsymbol{x}_c - \boldsymbol{x}_j|^2} \Big[\Big\{ |\boldsymbol{x}_c|^2 - \pi_{c|j}^2 \big(|\boldsymbol{x}_c - \boldsymbol{x}_j|^2 + |\boldsymbol{x}_j|^2 \big) \Big\} \boldsymbol{x}_j - \big(\boldsymbol{x}_c' \boldsymbol{x}_j - \pi_{c|j}^2 |\boldsymbol{x}_j|^2 \big) \boldsymbol{x}_c \Big], \quad (11)$$

$$\frac{\partial (\pi_{j|r} - \bar{p})^2}{\partial \boldsymbol{x}_j} = \frac{2\delta_{j|r}\lambda_{j|r}(\pi_{j|r} - \bar{p})}{\pi_{j|r}|\boldsymbol{x}_r|^2|\boldsymbol{x}_j - \boldsymbol{x}_r|^2} \Big[|\boldsymbol{x}_r|^2 (1 - \pi_{j|r}^2) \boldsymbol{x}_j - (\boldsymbol{x}_j' \boldsymbol{x}_r - \pi_{j|r}^2) \boldsymbol{x}_r \Big],$$
(12)

and

$$\frac{\partial (\pi_{c|j} - \bar{p})^2}{\partial x_j} = \frac{2\delta_{c|j}\lambda_{c|j}(\pi_{c|j} - \bar{p})}{\pi_{c|j}|x_j|^2|x_c - x_j|^2} \Big[\Big\{ |x_c|^2 - \pi_{c|j}^2 \big(|x_c - x_j|^2 + |x_j|^2 \big) \Big\} x_j - \big(x'_c x_j - \pi_{c|j}^2 |x_j|^2 \big) x_c \Big].$$
(13)
References

Borg, I., & Groenen, P. J. F. (2005) Modern multidimensional scaling. Springer.

- Kruskal, J. B., & Carrol, J. D. (1969) Geometrical models and badness-of-fit functions. In P. R. Krishnaiah (Ed.) Multivariate Analysis, (pp.639–671).
- Nakayama, A., & Yokoyama, S. (2010) Multidimensional scaling *The 13th Spring Seminar of The Behav*iormetric Society of Japan, (pp.40–57).
- Okada, A., & Imaizumi, T. (1987) Nonmetric multidimensional scaling of asymmetric proximities. Behaviormetrika, 21, 81–96.
- Shojima, K. (2009) Asymmetric triangulation scaling: A multidimensional scaling for visualizing inter-item dependency structure. Proceedings of The 7th Annual Meeting of the Japan Association for Research on Testing, 88–91.

(shojima@rd.dnc.ac.jp)