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In Shojima (2009), the stress function of asymmetric triangulation scaling (ATRISCAL) is proposed to

be given by the following expression:
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where n is the number of items. In addition, pc|r is the conditional correct response rate of item c when

item r is answered correctly, that is, pc|r = prc/pr, where pr is the correct response rate of item r and prc,

the joint correct response rate of items r and c. In addition, item n+ 1 is an imaginary item with a correct

response rate of 1.0, that is, pn+1 = 1.0. Therefore, pn+1|r = 1.0 and pc|n+1 = pc.

In addition, X = {xrm} ((n + 1) × M) gives the M -dimensional coordinates of the n + 1 items to be

estimated, where xr (M × 1) is the r-th row vector in X. Furthermore, λc|r is a nonnegative weight and

usually, λc|r = λr|c. Furthermore,
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in Equation (1) is the perpendicular foot from the origin O on the line segment XrXc. That is,∣∣−−−→OXrc
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Let the number of dimensions be 3 (M = 3), and the z-coordinate of each item in the 3D space is

constrained to be nonnegative. In other words, xr3 ≥ 0 (r = 1, · · · , n). In addition, the coordinates of some

items in the 3D space are fixed because of spatial indeterminacy. First, the coordinates of the imaginary

n+ 1-th item are set to xn+1 = [0 0 1]′. Next, for the item with index k whose correct response rate is the

lowest, the x- and y-coordinates are set as 0 and a positive value, respectively, that is, xk = [0 xk2(> 0) xk3]
′.

Finally, for the item with index l whose correct response rate conditioned by item k is the median among

p(·|k)s, the x-coordinate is set to a positive value, that is, xl = [xl1(> 0) xl2 xl3]
′.

Although the stress function of Equation (1) is straightforward and simple, it tends to produce a de-

generate solution. Therefore, using a penalty function T (X) against degeneration, the stress function is

reconstructed by
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The constant δc|r is dichotomous and is coded 1 when the perpendicular foot xrc is located within the line

segment between xr and xc. On the other hand, the constant is coded 0 if the perpendicular foot is located

on the extension of the line segment. In addition, p̄ in Equation (5) is
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To estimate X by minimizing the stress function using the steepest descent method, the first derivatives

of the stress function are required. First, the derivative of Equation (4) with respect to xj (j = 1, · · · , n) is
given by
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The kernels of the above equations are
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