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1. Introduction 

It is important to explore the inter-item dependency structure underlying test data. If the 
structure can be clarified, teachers can better order their study programs and learning materials. 
Ueno (2002) developed a model combining item response theory and a Bayesian network 
model to explore inter-item dependency relationships. 

We propose a multidimensional scaling (MDS) that visualizes the inter-item dependency 
structure in an adequate space by analyzing the conditional probability matrix. Let us assume 
that P(i) is the correct response rate of item i and P(i,j) is the joint correct response rate of 
items i and j. Then, the conditional probability of correctly answering item j given that item i 
has been correctly responded to, P(j|i), is P(j|i)=P(i,j)/P(i). A large P(j|i) means that the 
probability of correctly answering item j increases if item i has been correctly answered. Then, 
it is highly likely that the knowledge required for item i is a conditional precedent for correctly 
responding to item j.  

 
2. Method 
2.1 Inter-Item Asymmetry Conditional Probability Matrix 

The inter-item asymmetry conditional probability (ACP) matrix is an n×n matrix in which 
the ij-th element is P(j|i) and n is the number of items. The matrix is asymmetric because P(j|i) 
is not generally equal to P(i|j). The i-th diagonal entry of the matrix is 1.0 (P(i|i)= P(i,i)/P(i)= 
P(i)/P(i)=1.0). 

Next, the imaginary n+1-th item is prepared. The correct response rate of the imaginary 
item is 1.0. Therefore, the (n+1,i)-th element of the expanded ACP matrix becomes 
P(i|n+1)=P(i,n+1)/P(n+1)=P(i). Moreover, the (i,n+1)-th element of the expanded matrix is 
P(n+1|i)=P(i,n+1)/P(i)=1.0, and the (n+1,n+1)-th element is 1.0. This expanded ACP matrix is 
our target of analysis. 

 
2.2 Measure 
    It is important to determine what property between items i and j in a multidimensional space 
is measured and recorded as the ij-th element of the expanded ACP matrix. Let us suppose that 
items i and j are located in a Q(<n)-dimensional space with coordinates ܱ పܺሬሬሬሬሬሬሬԦ ൌ ࢞ ൌ ሾݔଵ  ’ொሿݔڮ
and ܱ ఫܺሬሬሬሬሬሬሬԦ ൌ ࢞ ൌ ሾݔଵ  ொሿ’. In addition, let us assume that the correct response rates of the twoݔڮ
items satisfy ܲሺ݅ሻ ൌ |ܱ పܺሬሬሬሬሬሬሬԦ| and ܲሺ݆ሻ ൌ |ܱ ఫܺሬሬሬሬሬሬሬԦ| and the joint correct response rate of the two items 
satisfy ܲሺ݅, ݆ሻ ൌ |ܱ పܺఫሬሬሬሬሬሬሬሬԦ|, where ܱ పܺఫሬሬሬሬሬሬሬሬԦ ൌ ࢞ ൌ ሾݔଵ  ொሿ’ is the perpendicular dropped on lineݔڮ



segment పܺܺఫሬሬሬሬሬሬሬሬԦ ( పܺܺఫሬሬሬሬሬሬሬሬԦ ٣ ܱ పܺఫሬሬሬሬሬሬሬሬԦ). Figure 1 shows the 
relationships among ܱ పܺሬሬሬሬሬሬሬԦ, ܱ ఫܺሬሬሬሬሬሬሬԦ, and ܱ పܺఫሬሬሬሬሬሬሬሬԦ. 
    From Figure 1, the conditional probabilities 
P(j|i) and P(i|j) can be regarded as the cosines 
of angles XiOXij and XjOXij, respectively. In 
addition, the cosine of the identical vector 
being the cosine of angle 0 (cos(0)=1.0), which 
is consistent with the fact that the diagonal 
elements of the expanded ACP matrix are 1.0. 

    Asymmetric TRIangulation SCALing (ATRISCAL) proposed in this study regards the 
relationships of all item pairs as the cosines of triangles and has the object to restore the lost Q-
dimensional coordinates of all n items from the expanded ACP matrix. That is, ATRISCAL 
seeks the Q-dimensional coordinates of the n items that as much as possible satisfy the 
asymmetric dependency relationships between all item pairs. Although an (n+1)-dimensional 
space must be prepared to obtain a result that perfectly explains all n(n+1) nondiagonal entries 
in the expanded ACP matrix, the number of dimensions is at most three for visualization.  
 
2.3 Stress Function 
 Let us assume that the lost coordinate matrix to be restored is X={xiq} (n×Q), and the stress 
function to be minimized is 

ሻࢄሺܨ ൌ  ߣ ൭ܲሺ݆|݅ሻ െ ߜ
หܱ పܺఫሬሬሬሬሬሬሬሬԦห
หܱ పܺሬሬሬሬሬሬሬԦห

൱
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, ሺஷሻ

, 

where 

ܱ పܺఫሬሬሬሬሬሬሬሬԦ ൌ െ పܺܺఫሬሬሬሬሬሬሬሬԦ · ܱ పܺሬሬሬሬሬሬሬԦ

| పܺܺఫሬሬሬሬሬሬሬሬԦ| పܺܺఫሬሬሬሬሬሬሬሬԦ  ܱ పܺሬሬሬሬሬሬሬԦ , and     ൭
หܱ పܺఫሬሬሬሬሬሬሬሬԦห
หܱ పܺሬሬሬሬሬሬሬԦห

൱
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ൌ 1 െ ൭
ܱ పܺሬሬሬሬሬሬሬԦ · పܺܺఫሬሬሬሬሬሬሬሬԦ

หܱ పܺሬሬሬሬሬሬሬԦหห పܺܺఫሬሬሬሬሬሬሬሬԦห
൱
ଶ
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The constant ߜ is the penalty term, for example, which is coded 1 when the triangle XiOXj is 

adequate and 0 otherwise. The inadequate case is that angle XiOXj is smaller than angle XiOXij. 
The factor ߣ is the weight of the squared distance between data and model with respect to the 

ij-th element in the expanded ACP matrix, and the lift value between items i and j is a candidate. 
 
3. Results 
    A math test containing 27 items was analyzed using the proposed method. The number of 
dimensions was set to be ܳ ൌ 3 ሺݔଵ א ሾെ1,1ሿ, ଶݔ  א ሾെ1,1ሿ, ଷݔ  א ሾ0,1ሿሻ. However, the directions 
of the axes of the first and second dimensions are arbitrary. Therefore, the first  and second 
coordinates of item 27 of which correct response rate is the lowest were set to be 0 (x27,1=0) 
and larger than 0 (x27,2>0), respectively. In addition, selecting an item of which conditional 
probability given that item 27 was correctly answered, the second coordinate of the item (item 
11) was constrained to be larger than 0. Furthermore, 

Fig. 1: Relationships among Xi, Xj, and Xij 
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ߣ ൌ ቄ1 if   ݅, ݆  ݊
݊ െ 1 otherwise
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The genetic algorithm was used to optimize the stress function. 

 

 
Figure 2 is the radial plot obtained by the analysis. The plotted black points are the 

estimated coordinates of the items. All the black points are located inside the hemisphere. The 
black line segment of each item represents their easiness. The rays of easier items generally 
have a tendency to cluster around the top and more difficult items are inclined to lie 
horizontally with respect to the XY-plane. In addition, each gray point is located on the 
hemispherical surface and is an extension of the black line segment. 

Figure 3 shows the topographic plot of the coordinates. The XY-coordinate of each item in 
the plot is identical to the XY-coordinate of the corresponding gray point in the radial plot, and 
the Z-coordinate in the topographic plot is the length of the gray line segment in the radial plot. 
In addition, the items are segmented by using Voronoi partitioning. In the topographic plot, 
more difficult items are more marginally located, lifted higher and colored lighter. Compared 
with the radial plot, the topographic plot makes it easier to understand the inter-item 
dependency structure. 

Figure 4 shows the “skill mastery” maps of six examinees. The Voronoi cells of items that 
the examinee correctly answered are colored in the map of each examinee. Each map is an 
ability profile of the examinee, which items he/she correctly or incorrectly answered. The 
upper-left map is colored only around the center, so this examinee’s achievement level can be 
said to be low. The upper-center map indicates the examinee had a moderate level of 
achievement; he/she can be said to have mastered skills to be denoted by the upper-right region 
of the circle, which mainly consist of the items on two-dimensional vector diagrams. The 
colored cells are scattered in the lower-left map. It is likely that this examinee did not study 
systematically. The lower-center map indicates a rare occurrence. This examinee correctly 
answered comparatively difficult items but failed easier items. Such an examinee may as well 
repeatedly study the basics. 

Fig. 2: Radial Plot Fig. 3: Topographic Plot 



 
Fig. 4: Skill Mastery Map Examples 
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