On the Stress Function of Asymmetric von Mises Scaling

Kojiro Shojima

The National Center for University Entrance Examinations 2-19-23 Komaba, Meguro-ku, Tokyo 153-8501, Japan shojima@rd.dnc.ac.jp

Abstract. Asymmetric von Mises Scaling (AMISESCAL; Shojima, 2011) is an asymmetric multidimensional scaling that is used for analyzing an asymmetric proximity data matrix. It can express an asymmetric relationship by using a von Mises (vM) distribution in directional statistics (Mardia, & Jupp, 2000). Consider an example of analyzing data for a sociometric matrix; if Persons A and B like each other, their coordinate estimates in a multidimensional space are located close to each other. Further, if Person C likes Person D but Person D does not like Person C, their coordinates are estimated to be located away from each other, and the mean direction parameter of the vM distribution associated with Person C looks towards the coordinate of Person D.

The objective of this study was to improve the stress function of AMISESCAL proposed by Shojima (2011). This was done as follows. First, a function to prevent the degeneration of coordinate estimates was added to the stress function. Second, a function to penalize the stress function in the case that the mean direction parameter of the vM distribution of each element looks towards where there is no one-sided relation was added to the stress function. We confirmed that addition of these two functions to the stress function improved the readability of the map after AMISESCAL analysis.

References

MARDIA, K. V. & JUPP, P. E. (2000): Directional Statistics. John Wiley and Sons. SHOJIMA, K. (2011): Asymmetric von Mises scaling. Paper presented in the proceedings of the 39th annual meeting of the Behaviormetric Society of Japan, Okayama University of Science, pp.261-262.

Keywords

ASYMMETRIC MULTIDIMENSIONAL SCALING, DIRECTIONAL STATISTICS, VON MISES DISTRIBUTION